

Optimizing a PID Controller for Simulated Single-Joint
Arm Dynamics

By: Indrani Mikkilineni
Shyam Patel

Chia-Hung Tai

BENG 221
November 21st, 2014

1

Table of Contents
Introduction .. 2

IPMC Motivation and Potential for Innovative ... 2

Feedback Loop .. 2

Response Properties ... 2

PID Controller .. 3

Problem Statement ... 5

Arm Model .. 5

Arm Model with Resistance Band ... 6

Characteristics of System Response ... 6

Derive Transfer Functions ... 8

Transfer function of Arm... 8

Transfer function of Arm with Resistance Band ... 8

Transfer function of PID Controller ... 9

Transfer function of Closed Loop System ... 9

Analytical solution ... 10

Arm .. 10

Modified Arm .. 11

Optimization Methods .. 11

Manual .. 11

Ziegler-Nichols .. 12

Cohen-Coon .. 12

Simulink ... 13

Results/Discussion .. 13

Responses/Manual Optimization .. 13

Cohen-Coon .. 14

Simulink ... 15

Optimization Method Selection .. 16

Model Limitations ... 17

Conclusion ... 17

References .. 18

Appendix: Matlab Code .. 19

2

Introduction

IPMC Motivation and Potential for Innovative

Ionic polymer metal composites (IPMC) are good candidates to simulate artificial
muscles due to their specific properties [1]. Low density, low voltage requirement, simple
fabrication, wide range of electrically induced bending, and mechanical flexibility are a few of
such characteristics for IPMC. IPMC bends due to changing voltage, which is within the range of
-3V to 3V [3]. How the IPMC bends depends on the current that flows through it – when a
voltage is applied, the material will bend [1]. The direction of the bending (toward the anode)
relies on the direction of the cation migration towards the cathode, and the direction will
reverse as the polarity changes [3]. This response is very similar to the response of human
muscle.

IPMCs have already been implemented as actuators – serving as precision surgical
equipment and modeling finger-like designs to perform delicate gripping (Fig 1) [2]. Yet
applications with IPMC are limited and the control still needs to be fine-tuned. Our goal is to
utilize the unique properties by modeling the IPMC strips to actuate the prosthetic arm and to
provide precise control using a PID controller.

Feedback Loop

In order to provide information to the controller about whether the plant has
performed its task or not, a closed loop system is used so the controller knows what the plant is
actually doing (Fig 2) [4]. The output from the plant is monitored and feedback is provided to
the controller, which is then compared with the system input to determine deviations from the
expected output, allowing the controller to make any necessary adjustments. This allows the
system to counteract errors and decrease response time. The PID controller will be added to
the feedback loop.

Response Properties

The main purpose of the feedback loop system is to correct for error. When optimizing
the system, a few specific properties defined below and shown in Fig 3 are focused on to
improve the output response. [4]

Figure 1. IPMC vs. Human Finger6 Figure 2. Closed Loop System4

3

 Rise time: Time it takes to go from 10% to 90% value of the input response

 Overshoot: Maximum peak reached (in a step response, it can be referred to as a
percentage overshoot – taking the difference of max value and steady-state value and
divide by the steady-state value)

 Settling time: Time it takes for the output to reach a 2% tolerance a band of the steady-
state value

 Steady-state error: The difference between the actual position and where the position
should be (2% tolerance)

 Oscillation: The system can oscillate infinitely, ends when it reaches the steady state, or
have no oscillations depending on the characteristics of the system.

Each property represents a behavior in the movement of a prosthetic arm controlled by an
input voltage:

 Rise time: The time when the bulk of the motion is observed.

 Overshoot: The displacement of the arm position past its desired range due the initial
response.

 Settling time: Time it takes for the arm to reach its final position.

 Steady-state error: The difference between actual location and desired location.

 Oscillation: The arm cycles back and forth between the desired location until it settles to
its final position

The optimal system would have the shortest possible rise time and settling time; as well as the
smallest steady-state error and overshoot. Depending on the objective for the system, some
properties are valued more than others. The role of the controller is to tune the response to
best meet the criteria.

PID Controller

PID is an acronym for each of the components of the system: proportional, integral,
derivative. It is a common type of controller for linear systems, with each component bringing
an improvement to specific properties of the response at the expense of other properties (see
Table 1 for clarification) [5]. The controller is tuned by manipulating the constants KP, KI, and KD.

Figure 3. Properties of Response4

4

(1.1)

P component – Proportional (KpE)
This component is the bulk of the PID control system. The controller takes the instantaneous
error value, multiplies by the constant KP, and adds it to the input signal. Since the term
depends only on the current error value, it is referred to as the “present” error. The
proportional component by itself makes a respectable controller, reducing rise time and slightly
lowering steady-state error [5]. The tradeoff is the loss in stability and increase in overshoot.

I component – Integral (Ki∫𝐸 𝑑𝑡)
The integral component helps to improve on the proportional control by further reducing the
steady-state error. This control, referred to as the “past” error, compiles all the past error (by
integrating the error value for a moving time window) and multiplies by the constant KI.
Although the steady-state error is reduced, this causes the system’s oscillation to increase and
the speed of response to decrease [5].

D component – Derivative (KD
𝑑𝐸

𝐷𝑡
)

The last component focuses on the “future” error, which is done by taking the derivative of the
error signal and multiplying by the KD constant. The derivative portion helps to improve
overshoot, rise time, and settling time [5]. These improvements are theoretical since the values
are based on an approximation from the current errors. This component may not be reliable in
real-world scenarios, since it does not respond stably to noisy signals.

Fig 4 demonstrates the closed loop PID system. The final equation of the PID controller is
demonstrated by Equation 1.1. [5]

𝑈 = 𝐾𝑝𝐸 + 𝐾𝑖∫𝐸𝑑𝑡 + 𝐾𝐷
𝑑𝐸

𝐷𝑡

𝑈 = 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟 𝑂𝑢𝑡𝑝𝑢𝑡 𝐸 = 𝑆𝑦𝑠𝑡𝑒𝑚 𝐸𝑟𝑟𝑜𝑟

𝐾𝑝 = 𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑎𝑙 𝐺𝑎𝑖𝑛 𝐾𝑖 =
𝐾𝑝

𝑇𝑖
= 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙 𝐺𝑎𝑖𝑛 𝐾𝐷 = 𝐾𝑝 ∗ 𝑇𝐷 = 𝐷𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 𝐺𝑎𝑖𝑛

Table 1. Relationships of different control terms on properties5

5

(2.1)

(2.2)

Problem Statement

The main goal of this study is to closely mimic human arm movement by incorporating

IPMC strips to a prosthetic arm to model the elbow movement, controlled by a neural input (Fig
5). We plan to improve the step response of a prosthetic arm using a PID control system in
order to address past, present, and future error. Ultimately, we will attempt to optimize among
the following parameters for the best outcome – the response time, overshoot, and steady-
state error.

Arm Model

Based on the torque balance between inertia and friction, the torque for the elbow joint can be
modeled by the ordinary differential Equation (ODE) 2.1. [7]

𝐽 ∗ 𝜃′′ + 𝑓 ∗ 𝜃′ = 𝜏 +𝑀𝑔𝑙 ∗ cos(𝜃)

Since this equation is non-linear, assume gravity will not affect the arm in horizontal motion.

The range of motion and the gravitational field are perpendicular, thus excluding it from our

equation making it easier to solve. [7]

𝐽 ∗ 𝜃′′ + 𝑓 ∗ 𝜃′ = 𝜏
 𝐽 = 𝑖𝑛𝑡𝑒𝑟𝑡𝑖𝑎 𝑜𝑓 𝑎𝑟𝑚 𝜃 = 𝑎𝑛𝑔𝑙𝑒 𝑜𝑓 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛

𝑓 = 𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑗𝑜𝑖𝑛𝑡 𝜏 = 𝑎𝑐𝑡𝑢𝑎𝑡𝑜𝑟 𝑡𝑜𝑟𝑞𝑢𝑒

Assumptions

 Arm
o Has a horizontal range of motion (to eliminate the gravity/weight term)
o Geometrically an ideal cylinder

 Elbow joint
o Modeled to have only one degree of freedom
o Coefficient of friction is constant

Figure 4. PID Controller Block Diagram5 Figure 5. Diagram of our elbow7

6

(2.3)

(3.2, 3.3)

(3.1)

 Controller
o Motor torque output is completely linear relative to the input voltage

 Signal input
o Neural input is processed to behave like an EMG (generating a unit step instead

of pulses)

Our ODE is modeling the equivalence of torques, with friction and inertia resisting an
applied torque from our actuator. Since we are modeling the output position to a step input
voltage, the system without control will never stop at a particular position. Although when a
feedback loop is added, the actual position and desired position can be compared, and voltage
(effectively, motor torque) can be increased or reduced to get to the target position.

In order to demonstrate a steady response without feedback, another situation is
hypothesized:

Arm Model with Resistance Band

We need an extra torque dependent on the position itself, so a “spring” term was added to get
a stable open loop response seen in Equation 2.3.

𝐽 ∗ 𝜃′′ + 𝑓 ∗ 𝜃′ + 𝑅𝑏 ∗ 𝜃 = 𝜏

𝑅𝑏 = 𝑅𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝐵𝑎𝑛𝑑 (Spring Constant)

To linearize the “spring” term, we assumed a straight trajectory for the resistive band instead of
the actual circular path. All assumptions remain the same as the original arm model.

Characteristics of System Response
We are using the Arm Model with the Resistance band to observe the characteristics, as

the normal Arm Model doesn’t converge at a finite value as time approaches infinity. By
observing Equation 2.3, we can calculate the following two properties – damping ratio (𝜁) and
undamped natural frequency(𝜔𝑛) [8]. These properties of a second order system will explain a
relationship among the parameters we will be optimizing later on such as rise time, overshoot,
settling time.

Solve for 𝜁 𝑎𝑛𝑑 𝜔𝑛. First divide Equation 2.3 by 𝐽.

𝜃′′ +
𝑓

𝐽
∗ 𝜃′ +

𝑅𝑏

𝐽
∗ 𝜃 = 𝜏

𝜔𝑛
2 =

𝑅𝑏

𝐽
 2𝜔𝑛𝜁 =

𝑓

𝐽

7

(3.5)

(3.4)

𝑪𝒐𝒏𝒔𝒕𝒂𝒏𝒕 𝑽𝒂𝒍𝒖𝒆𝒔

𝑴𝒂𝒔𝒔 (𝒎) 1𝑘𝑔
𝑹𝒂𝒅𝒊𝒖𝒔 (𝒓) 8.89 ∗ 10−2𝑚
𝑭𝒓𝒊𝒄𝒕𝒊𝒐𝒏 (𝒇) 0.2
𝑻𝒐𝒓𝒒𝒖𝒆 (𝝉) 1.39 𝑘𝑔𝑚

𝑰𝒏𝒑𝒖𝒕 𝑽𝒐𝒍𝒕𝒂𝒈𝒆 (𝑬𝒂) 6𝑉
𝑹𝒆𝒔𝒊𝒔𝒕𝒂𝒏𝒄𝒆 𝑩𝒂𝒏𝒅(𝑹𝒃) 1𝑘𝑔/𝑟𝑎𝑑
𝑰𝒏𝒕𝒆𝒓𝒕𝒊𝒂 (𝑱) = 𝒎 ∗ 𝒓𝟐 7.90 ∗ 10−3𝑚2𝑘𝑔

Above is the table of constants that we will be using throughout the paper. The mass,
measured torque, and distance from the center of mass to the joint are obtained from Boston
Digital Arm since we were not able to find such values pertaining to IPMC arms [10]. The
friction of coefficient is obtained for that of Ultra-high molecular weight polyethylene instead of
the IPMC, which is a common material is used for the prosthetic joints [11]. The input voltage
used is based on a voltage range common for IPMC [3].

𝜔𝑛 = √
𝑅𝑏
𝐽
= 11.2

𝑟𝑎𝑑

𝑠
 𝜁 =

𝑓

2√𝐽𝑅𝑏
= 0.225

𝑘𝑔𝑠

𝑟𝑎𝑑

The damping ratio (𝜁) will show how much the system oscillates before reaching
steady-state. As the value of the damping ratio is less than 1, we can determine that the system
will be underdamped. The natural frequency (𝜔𝑛) is the frequency the system would oscillate
without damping, in our case friction.

Overshoot is an important parameter to optimize as having the mechanical arm fling
past the point which would be detrimental to having control. Overshoot is inversely
proportional to the damping ratio and completely unrelated to the natural frequency. The
equation below shows the relationship between overshoot and the damping ratio. [9]

𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝑂𝑣𝑒𝑟𝑠ℎ𝑜𝑜𝑡 = 100 ∗ 𝑒
−

𝜁𝜋

√1−𝜁2

Settling time (𝑇𝑠) is the time until the system reaches steady-state. For estimation
purposes, we will find the time when the system is within 2% of the steady-state value. The
following equation shows the relationship between the damping ratio/natural frequency and
settling time. [9]

𝑇𝑠 = − ln(−
0.02√1 − 𝜁2

𝜁𝜔𝑛
) ≈ 4/𝜁𝜔𝑛

Rise Time (𝑇𝑟) is the time that the system takes to reach from 10% to 90% of the
steady-state value. There is not a direct relationship to compare rise time and the damping
ratio, but in general they are directly proportional. [9]

Keep in mind that these properties/parameters are specifically true for second-order systems.

Table 2. Calculated and given constants describing the system3, 10, 11

8

(4.2)

(4.1)

(4.3)

(4.4)

(4.5)

(4.6)

Derive Transfer Functions

Transfer function of Arm

Start with the Arm Model Equation 2.2. Take the Laplace and assume initial conditions are 0, as
the arm is not moving initially.

𝜃(𝑠) ∗ (𝐽𝑠2 + 𝑓𝑠) = 𝑇(𝑠)

Solve for the Transfer Function and multiply by (
1

𝑓
) /(

1

𝑓
) .

𝐺𝑎𝑟𝑚(𝑠) =
𝜃(𝑠)

𝑇(𝑠)
=

1
𝑓

𝑠(𝑇𝑚𝑠 + 1)
 𝑤ℎ𝑒𝑟𝑒 𝑇𝑚 =

𝐽

𝑓

Assume Input Voltage and Torque are linearly proportional: 𝜏 = 𝐴 ∗ 𝐸𝑎

𝑇(𝑠) = 𝐴 ∗ 𝐸𝑎(𝑠)

𝐺𝑎𝑟𝑚(𝑠) =
𝜃(𝑠)

𝐸𝑎(𝑠)
=

𝐶

𝑇𝑚𝑠2 + 𝑠
 𝑤ℎ𝑒𝑟𝑒 𝐶 =

𝐴

𝑓

Solve for constants A and C.

𝑇𝑚 =
𝐽

𝑓
= 3.95 ∗ 10−2𝑚2𝑘𝑔

𝐴 =
𝜏

𝐸𝑎
= 2.31 ∗ 10−1𝑚𝑘𝑔/𝑉

𝐶 =
𝐴

𝑓
=
1.15𝑚𝑘𝑔

𝑉

Transfer function of Arm with Resistance Band

Start with the Arm Model with Resistance Band Equation 2.3. Take the Laplace and assume
initial conditions are 0, as the arm is not moving initially.

𝜃(𝑠)(𝐽𝑠2 + 𝑓𝑠 + 𝑅𝑏) = 𝑇(𝑠)

Solve in a similar manner as the above Transfer function of the arm.

𝐺𝑎𝑟𝑚_𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 =
𝜃(𝑠)

𝐸𝑎(𝑠)
=

𝐶

𝑇𝑚𝑠2+𝑠+
𝑅𝑏
𝑓

9

(4.7)

(4.8)

(4.9, 4.10, 4.11)

(4.12)

(4.13, 4.14)

(4.17)

(4.16)

(4.15)

(4.18)

Transfer function of PID Controller

Start with the PID Controller Equation 1.1. Take Laplace, assume initial conditions are 0, as
there is no initial controller output or error.

𝑈(𝑠) = 𝐸(𝑠) (𝐾𝑝 + 𝐾𝑖 ∗
1

𝑠
+ 𝐾𝐷 ∗ 𝑠)

Solve for the transfer function of PID

𝐺𝑃𝐼𝐷(𝑠) =
𝑈(𝑠)

𝐸(𝑠)
= 𝐾𝑝 + 𝐾𝑖

1

𝑠
+ 𝐾𝐷𝑠

Transfer function of Closed Loop System

Figure 6. Feedback/Controller Block Diagram 4

First, let’s solve for a general Transfer function of the above closed loop system in Figure 6. For
our system assume 𝐺𝑝(𝑠) = 𝐺𝑎𝑟𝑚 𝑎𝑛𝑑 𝐺𝑐(𝑠) = 𝐺𝑃𝐼𝐷 [4]. Also, the fact that we know gain =

output/input gives us the following equations.

𝐺𝑝(𝑠) =
𝑐𝑛
𝑚𝑛

 𝐺𝑐(𝑠) =
𝑚𝑛
𝑒𝑛
 𝐺𝑠𝑦𝑠(𝑠) =

𝑐𝑛
𝑟𝑛

𝑒𝑛 = 𝑟𝑛 − 𝑐𝑛

𝑐𝑛 = 𝐺𝑝(𝑠)𝑚𝑛 𝑚𝑛 = 𝐺𝑐(𝑠)𝑒𝑛

𝑐𝑛 = 𝐺𝑝(𝑠)𝐺𝑐(𝑠)𝑒𝑛

𝑐𝑛 = 𝐺𝑝(𝑠)𝐺𝑐(𝑠)(𝑟𝑛 − 𝑐𝑛)

𝐺𝑠𝑦𝑠(𝑠) =
𝑐𝑛
𝑟𝑛
=

𝐺𝑝(𝑠)𝐺𝑐(𝑠)

1 + 𝐺𝑝(𝑠)𝐺𝑐(𝑠)

Now let’s solve for our system by convoluting the 𝐺𝑎𝑟𝑚 𝑎𝑛𝑑 𝐺𝑃𝐼𝐷 in Equations 4.4 and 4.8.

𝐺𝑠𝑦𝑠𝑡𝑒𝑚(𝑠) =
𝐺𝑎𝑟𝑚(𝑠)𝐺𝑃𝐼𝐷(𝑠)

1 + 𝐺𝑎𝑟𝑚(𝑠)𝐺𝑃𝐼𝐷(𝑠)

10

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)

𝐺𝑠𝑦𝑠𝑡𝑒𝑚(𝑠) =

𝐶
(𝑇𝑚𝑠 + 1)

(𝐾𝑝 + 𝐾𝑖
1
𝑠 + 𝐾𝐷𝑠)

1 +
𝐶

(𝑇𝑚𝑠 + 1)
(𝐾𝑝 + 𝐾𝑖

1
𝑠 + 𝐾𝐷𝑠)

𝐺𝑠𝑦𝑠𝑡𝑒𝑚(𝑠) =
𝑠2(𝐶𝐾𝐷) + 𝑠(𝐶𝐾𝑝) + 𝐶𝐾𝑖

𝑠3(𝑇𝑚) + 𝑠2(1 + 𝐶𝐾𝐷) + 𝑠(𝐶𝐾𝑝) + 𝐶𝐾𝑖

Analytical solution
Starting with the transfer functions of both the normal arm and modified arm (model

with resistant band), let’s simplify by using partial fractions and then take the inverse Laplace.
The open loop system below in Figure 6 is the system in which our analytical solutions will be
solved, as the analytical solutions for the closed loop system with the PID Controller is too
complex.

Figure 7. Open Loop System Block Diagram4

For our system, assume the input - 𝐸𝑎(𝑠) and output - 𝜃(𝑠).

Arm
Given Equation 2.2, we were able to obtain Equation 4.4. Then, separate using partial fractions.

𝐺𝑎𝑟𝑚(𝑠) =
𝜃(𝑠)

𝐸𝑎(𝑠)
=

𝐶

𝑇𝑚𝑠2 + 𝑠
=
𝐴

𝑠
+

𝐵

𝑇𝑚𝑠 + 1
=
𝐴(𝑇𝑚𝑠 + 1)

(𝑇𝑚𝑠 + 1)(𝑠)
+

𝐵(𝑠)

(𝑇𝑚𝑠 + 1)(𝑠)

𝐴(𝑇𝑚𝑠 + 1) + 𝐵(𝑠) = 𝐶

𝐴 = 𝐶 𝑎𝑛𝑑 𝐵 = −𝑇𝑚𝐶

𝐺𝑎𝑟𝑚(𝑠) =
𝐶

𝑠
+

−𝑇𝑚𝐶

𝑇𝑚𝑠+1
=

𝜃(𝑠)

𝐸𝑎(𝑠)

Take the inverse Laplace.

𝜃(𝑡) = (𝐶 − 𝐶𝑒
−
𝑡
𝑇𝑚)𝐸𝑎(𝑡)

11

(4.24)

(4.25)

(4.26)

Modified Arm

Given the modified arm Equation 2.3, we were able to obtain the transfer function in Equation
4.6. To simplify the equation let’s set 𝑅 = 𝑅𝑏/𝑓. To find the partial fractions, use the following
quadratic equation.

−𝑏 ± √𝑏2 − 4𝑎𝑐

2𝑎

𝐺𝑎𝑟𝑚_𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 =
𝜃(𝑠)

𝐸𝑎(𝑠)
=

𝐶

𝑇𝑚𝑠2 + 𝑠 + 𝑅
=

𝐴

𝑠 +
1 + √1 − 4(𝑇𝑚)(𝑅)

2𝑇𝑚

+
𝐵

𝑠 +
1 − √1 − 4(𝑇𝑚)(𝑅)

2𝑇𝑚

𝐴 = −
𝐶

√1 − 4𝑅𝑇𝑚
 𝑎𝑛𝑑 𝐵 =

𝐶

√1 − 4𝑅𝑇𝑚

Take the inverse Laplace.

𝜃(𝑡) =

(

 −𝐶𝑒

𝑡∗(−
√1−4𝑅𝑇𝑚
2𝑇𝑚

−
1
2𝑇𝑚

)
+ 𝐶𝑒

𝑡∗(
√1−4𝑅𝑇𝑚
2𝑇𝑚

−
1
2𝑇𝑚

)

√1 − 4𝑅𝑇𝑚

)

∗ 𝐸𝑎(𝑡)

These analytical solutions show the solution of how the angle of rotation is related to the input

voltage in the time domain compared to the transfer functions which were in the evaluated in

the s domain.

Optimization Methods

When evaluating optimization methods, it is important to remember that this process is

very subjective, and that there is no “right” answer when selecting control parameters, thus
there are many different methods to select parameters. A method is chosen based on the
response specific to the system its constraints.

Manual

The simplest optimization method is manual tweaking of PID parameters. A simulation
can be set up in Matlab (or other appropriate software) to evaluate the numeric value of the
response for a certain time range. Using what is known about each of the different control
terms in PID, parameters are changed and the updated response is evaluated for quality. This
method is essentially guess-and-check.

12

Ziegler-Nichols

We were originally going to use the Ziegler-Nichols optimization method, but this would
not work for our situation since it requires constant oscillations in a P controller. The reason for
this is because of an input torque being converted to a position output (the reason why this
system is not stationary if there is no controller or spring force). Since we can’t do this, we
decided to use Cohen-Coon instead.

Cohen-Coon

The Cohen-Coon optimization method (see Table 3) is done by analyzing the open-loop
response of a system and getting time values for when the response is 50% of the steady state
value and 63.2% of the steady state value [12]. These time values are used with a
predetermined table specific to this method to compute the values of the control constants.
This method is most appropriate for systems that have a relatively long rise time.

Cohen – Coon Time Values

t0 = time when input initiated

t2 = time when 50% of steady state value is reached

t3 = time when 63.2% of steady state value is reached

Cohen – Coon Calculated Values

t1 𝑡2 − (𝑙𝑛(2) ∗ 𝑡3)

1 − 𝑙𝑛(2)

τ 𝑡3 − 𝑡1

τ del 𝑡1 − 𝑡0

K 𝑆𝑡𝑒𝑎𝑑𝑦 𝑠𝑡𝑎𝑡𝑒

𝐼𝑛𝑝𝑢𝑡 𝑠𝑡𝑒𝑝 𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒

r 𝜏𝑑𝑒𝑙
𝜏

Kp
(
1

𝐾
∗ 𝑟) ∗ (

4

3
+
𝑟

4
)

Ti 𝜏𝑑𝑒𝑙 ∗ (32 + 6𝑟)

13 + 8𝑟

TD 4 ∗ 𝜏𝑑𝑒𝑙
11 + 2𝑟

 Table 3. Cohen-Coon Algorithm12

13

Simulink

The Simulink module in MATLAB is a very user-friendly method, provided that the
system model can be created. To start optimization, simply “tune” the PID controller block in
the model. The program will show you the current and “tuned” response, the latter of which
will change as the properties sliders are adjusted. Simply raising the sliders to max will usually
not yield a perfect result, as there are tradeoffs between desirable system properties. For
tuning of real systems, this seems to be the most appropriate choice, as it asks the user to input
the properties they desire, not specific constants. It also takes into account certain design rules
for real systems (like minimizing the derivative gain when possible in case of noisy signals).

Results/Discussion
Responses/Manual Optimization

As described earlier, the uncontrolled
system with no resistive band (Fig 8) forms
an infinite ramp. This corresponds to the arm
spinning at a constant angular velocity. This is
because a step torque is being input into the
system, which eventually forms an
equilibrium with the friction and inertia
forces, and maintains a constant angular
velocity. The arm is not actually going to an
infinite position value, rather the arm keeps
rotating, and the output can be rewritten as
an angular position, along with a certain
number of complete rotations.

Figure 8. No load, no feedback loop

Percent Overshoot: 6.2172e-13%

Steady State Error: 1.9984e-15

Rise Time: 5.4000e-04 seconds

Figure 9. No load, manually optimized PID Control

Control Constants

Kp = 3500
Ki = 0
KD = 140

14

With the addition of feedback control, the steady state value converges onto the target
value. This system is simple and has no steady state error even with a simple proportional
controller (Fig 9). A derivative term was added as well to minimize overshoot and allow for a
smooth response at higher proportional gains. The method here was to raise the proportional
gain to reduce rise time, then raise the derivative gain to reduce overshoot. This iteration was
done several times to come to the final PID controller shown above. The response shown above
has no apparent issues, with minimal overshoot and steady state error, and a fast response
time. This would appear as an arm that rapidly arrives at its target position, with no oscillations.

With the addition of a resistive band, the system no longer needs a controller to have a
finite steady state value (Fig 10). Response properties are still in much need of improvement at
this stage, with the most noticeable problem being the extremely large steady state error. This
response would appear as an arm that reaches its final position fairly quickly, but stops much
earlier than it should. Thus its actual position is very far from its desired position.

Cohen-Coon

Figure 10. Resistive band without feedback loop

Percent Overshoot: N/A

Steady State Error: -.7691

Rise Time: .3546 seconds

Percent Overshoot: 1.59%

Steady State Error: 1.9984e-15

Rise Time: 5.4000e-04 seconds

Control Constants
Kp = 19.1485
Ki = 9.0770
KD = 57.5846

Figure 11. Cohen-Coon optimized PID on resistive band system

15

Cohen - Coon optimization gives a PID controller an extremely fast response time (see
Fig 11). This comes at the expense of oscillations, and what is effectively a “negative”
overshoot. This response would appear as an arm that initially moves extremely fast towards its
final position, but then experiences a slow but significant oscillation for the next 10-15 seconds.

Simulink

The tuning settings for an arm with no resistance are pretty simple. Both sliders are just
put to the maximum value and the “cleanest” and fastest response is achieved (Fig 12). The
physical behavior of this system is similar to the manually tuned system, with a rapid
convergence on the target position, and no overshoot. There is a key difference in the
controller itself, in that the derivative gain is much lower than that of the manually tuned
system, which makes the system more resistant to noisy signals.

Figure 12. Simulink optimized without Resistance Band – included
tuning settings from module (Both sliders set to max)

Percent Overshoot: 0%

Steady State Error: -.001

Rise Time: .00495 seconds

Control Constants

Kp = 329.5

Ki = 3.215

KD = .04683

16

The tuning settings for an arm with a resistance illustrate some of the tradeoffs involved
in control system optimization (Fig 13). A faster response time can be specified, though this will
come at the expense of either a significant steady state error (approximately 10%), or some
overshoot in the response. Since this response is still very fast given the physical requirements,
with a rise time of only 40 ms, stability of the response has been prioritized over response
speed.

Optimization Method Selection

It was found that the best type of optimization for both scenarios was the Simulink-
tuned PID controller. The Simulink-tuned controller was preferable to the manually tuned
controller in the system without the resistance band, even though the system response was
slower. This was because the derivative term had a much lower gain, and the system would be
much more stable in the field, where there can be noisy signals. The Simulink-tuned controller

Percent Overshoot: 1.05%

Steady State Error: .005

Rise Time: .0396 seconds

Figure 13. Simulink optimized with Resistance Band – included
tuning settings from module

Control Constants
Kp = 46.6601
Ki = 5.949
KD = .04057

17

was preferable to the Cohen-Coon controller in the system with the resistance band, despite
having the same issue of slower response time. In this case, Cohen-Coon was deemed inferior
because of the long lasting oscillations that were present in the step response.

Model Limitations

There are several limitations in our mathematical model. The main limitation in our
model is our inability to include gravitational force, and thus an inability to model movement in
the vertical plane. Another limitation in our model is the lack of multiple degrees of freedom.
Theoretically, each joint would be independent of the surrounding joints when considering its
own angular displacement, but the presence of inertia and momentum from other members
would make each joint dependent on the other joints. This is made even more significant if we
decide to model a multi-joint arm that is moving in the vertical plane with the influence of
gravity.

Conclusion

We attempted to model a single joint arm that has a range of motion perpendicular to
gravity, and with no external load. A torque was applied to the arm, and the forces that resist
this torque are the inertia of the arm and the friction of the joint. It was found that this system
alone would not produce a stable step response without a feedback loop, so a resistive band
was added to stabilize the position in an open loop system. Different optimization methods
were applied for the PID controllers of each of these systems. The methods utilized were
manual tuning, Cohen-Coon optimization, and tuning in the Simulink module in MATLAB. It was
determined that tuning with Simulink would give the best overall PID solution in both scenarios.

We explored and verified the use of PID controllers for IPMC prosthetics, using Simulink
to select the controller characteristics. Simulink assisted us in finding the optimum balance of
response characteristics that would be appropriate for replicating a human arm. This advantage
was observed most in the arm with the resistance band, where there was no clear “best”
solution and some tradeoffs had to be made. The Simulink UI was very useful in quickly
observing a range of solutions, as opposed to using the guess and check method of manual
tuning.

To improve this model, we can attempt to introduce gravity into this mode and add
multiple joints. Introduction of multiple joints would create dependencies on the momentums
of other joints. This effect would be magnified if gravity was also introduced into the model. An
issue with the introduction of gravity in the model is the nonlinear equation that results from
an accurate representation. A specific challenge in introducing gravity is linearizing the equation
for a range of angles greater than 0-90 degrees. Despite the lack of these factors, our model still
demonstrates a method of optimization for PID-controlled IPMC arm.

18

References

[1] Prajan, A., Krishnan, N., Srinivas, P., & Vigneswaran, N. (n.d.). Design, Development and
Implementation of Neurologically Controlled Prosthetic Limb Capable of Performing Rotational
Movement. IEEE, 241-244.
[2] Aw, K., Fu, L., & Mcdaid, A. (2013). An IPMC actuated robotic surgery end effector with force
sensing. International Journal of Smart and Nano Materials, 1-11.
[3] Jain, R., Datta, S., Mukherjee, S., Sadhu, D., Samanta, S., & Banerjee, K. (n.d.). Bio-mimetic
Behaviour of IPMC Artificial Muscle Using EMG Signal. IEEE, 186-190.
[4] Transfer functions. (n.d.). Retrieved November 13, 2014, from
http://eent3.lsbu.ac.uk/units/b3embsys/Week 8 TransferFunction.htm
[5] Ari, K., Asal, F., & Cosgun, M. (n.d.). PI, PD, PID Controllers. Retrieved November 13, 2014,
from http://www.eee.metu.edu.tr/~ee402/2012/EE402RecitationReport_4.pdf
[6] Jain, R., Datta, S., & Majumder, S. (2012). Design and Control of an EMG Driven IPMC Based
Artificial Muscle Finger. INTECH Open Access Publisher.
[7] Takaya, K. (Director) (2003, January). Review of Analog Controller Design. Lecture conducted
from University of Saskatchewan.
[8] An Introduction To System Dynamics - Second Order Systems. (n.d.). Retrieved November
20, 2014, from http://www.facstaff.bucknell.edu/mastascu/econtrolhtml/sysdyn/sysdyn2.html
[9] Time Response. (n.d.). Retrieved November 21, 2014, from
http://aerostudents.com/files/aerospaceSystemsAndControlTheory/Book/ControlSystemsEngin
eeringCH4.pdf
[10] Boston Digital Arm System. (n.d.). Retrieved November 13, 2014, from
http://www.liberatingtech.com/products/documents/Catalog_-
_Boston_Digital_Arm_System_2013.pdf
[11] Kahyaoglu, O., & Unal, H. (2012). Friction and wear behaviours of medical grade UHMWPE
at dry and lubricated conditions. International Journal of Physical Sciences, 7(16), 2478-2485.
[12] Cohen Coon Tuning Method. (n.d.). Retrieved November 13, 2014, from
http://www.chem.mtu.edu/~tbco/cm416/cctune.html

19

Appendix: Matlab Code

clear all
y=0
%MANUAL TUNING OF BASIC ARM MODEL
%Manual tuning of arm (without band)
s = tf('s')
P = (1.1545)/(((.039516)*(s^2))+s);

%Establish controller parameters, and convolute with arm transfer function.
Kp = 3500;
Ki = 0;
Kd = 140;
C = pid(Kp, Ki, Kd)
T = feedback(C*P,1)

%Setup time vector and plot step response of entire system for time vector
%t.
figure
t = 0:0.00001:1.5;
step(T,t);
y=step(T,t);

%Overshoot
over=max(y);
if over>1
 percent_overshoot_noloadcontrolled=(over-1)/y(length(t))
end

%Steady state error
final=y(length(t));
steady_state_error_noloadcontrolled = (final-1)/1

%Rise time
x=false;
z=false;
for i=1:length(t);
 if y(i)>=.1*final;
 if x==false&z==false;
 x=true;
 t10=t(i);
 end
 end
 if y(i)>=.9*final;
 if x==true&z==false;
 z=true;
 t90=t(i);

20

 end
 end
end
rise_time_noloadcontrolled=t90-t10

%COHEN-COON OPTIMIZATION OF ARM WITH RESISTIVE BAND

%Setup arm transfer function (with band).
%s = tf('s');
P = (1.1545)/(((.039516)*(s^2)) + s + 5);

%Setup time vector and plot step response of entire system for time vector
%t.
t = 0:0.00001:25;
figure
step(P,t)

%Cohen Coon optimization of PID controller. Get open loop response of the
%arm, and measure time values where the output is 50% and 63.2% of the
%settled value is reached.
y=step(P,t);
x=false;
z=false;
t_0=t(1);
settle_value=y(length(t))
for i=1:length(t);
 if x==false;
 if y(i)>= settle_value/2;
 x=true;
 t_2=t(i);
 end
 end
 if z==false;
 if y(i)>= settle_value*(.632);
 z=true;
 t_3=t(i);
 end
 end
end

%Overshoot
over=max(y);
if over>1
 percent_overshoot_loaduncontrolled=(over-1)/y(length(t))
end

%Steady state error

21

final=y(length(t));
steady_state_error_loaduncontrolled = (final-1)/1

%Rise time
x=false;
z=false;
for i=1:length(t);
 if y(i)>=.1*final;
 if x==false&z==false;
 x=true;
 t10=t(i);
 end
 end
 if y(i)>=.9*final;
 if x==true&z==false;
 z=true;
 t90=t(i);
 end
 end
end
rise_time_loaduncontrolled=t90-t10

%Calculate K as output settle value divided by input,
%which is 1 (unit step). Other constants specified by Cohen-Coon method.
K=settle_value/1;
t_1=(t_2-(log(2)*t_3))/(1-(log(2)));
tor=t_3-t_1;
t_del=t_1-t_0;
r=t_del/tor;

Kp=(1/(K*r))*((4/3)+(r/4))
Ki=(13+8*r)/(t_del*(32+6*r))
Kd=(11+2*r)/(4*t_del)

%Convolute calculated PID controller with system and graph response.
C = pid(Kp, Ki, Kd);
T = feedback(C*P,1);
figure
step(T, t);
y=step(T,t);

%Overshoot
over=max(y);
if over>1
 percent_overshoot_loadcohen=(over-1)/y(length(t))
end

%Steady state error

22

final=y(length(t));
steady_state_error_loadcohen = (final-1)/1

%Rise time
x=false;
z=false;
for i=1:length(t);
 if y(i)>=.1*final;
 if x==false&z==false;
 x=true;
 t10=t(i);
 end
 end
 if y(i)>=.9*final;
 if x==true&z==false;
 z=true;
 t90=t(i);
 end
 end
end
rise_time_loadcohen=t90-t10

